
Orthogonal Vectors and the

Subquadratic World
Deepanshu Kush

June 9, 2020

Outline of the talk

 Motivation: Fine-grained complexity

 Orthogonal Vectors (OV) problem definition and OV Conjecture

 Connection to SETH

 Connection to other quadratic time problems

 A couple reductions, and examples

 The cubic cousin, APSP (if time permits)

2

Motivation: Fine-

grained Complexity

3

String Problems

 Edit distance:

 between two strings, defined as the min number of insertions, deletions or substitutions of symbols needed
to transform one string into another

 applications in computational biology, natural language processing and information theory

 Simple quadratic-time DP algorithm, but even the best one takes ෨𝑂 𝑛2 time

 Longest Common Subsequence (similar story)

 Sequence local alignment:

 Given two sequence of bases

Compute an “alignment”:

 Again DP takes 𝑂 𝑛2 time

4

String Problems (contd.)

So, no ෨𝑂(𝑛2−𝜀) algorithm known for Edit distance, Longest Common Subsequence or Sequence local alignment

Turns out this is a recurring theme for many problems in computational geometry too, like given 𝑛 points, checking if some
3 are collinear (and many more geometry problems, as we shall see today)

Even for certain graph problems like calculating the diameter of a sparse (𝑂 𝑛 edges) graph

So could the hardness of solving these string problems and geometry problems in truly sub-quadratic time be related? Are
we stuck on all of them for the same underlying reason?

If so, parallels with NP-hardness? Knapsack, TSP, colouring, Independent Set, Candy Crush(!) are all NP-hard, or in other
words, harder than SAT

Could there be a “SAT” for TIME(෨𝑂(𝑛2)), that all these problems are “harder” than? Such a thing as “sub-quadratic”
reduction? Like many-one/Turing reductions between NP-complete problems

5

Identifying one key quadratic problem

 Orthogonal Vectors! (Like “SAT” for TIME(෨𝑂(𝑛2))?)

 Turns out we can show that a multitude of problems are OV-hard:

Graph diameter [RV’13,BRSVW’18],

eccentricities [AVW’16],

local alignment, longest common substring* [AVW’14], Frechet distance [Br’14], Edit

distance [BI’15], LCS, Dyn. time warping [ABV’15, BrK’15], subtree isomorphism

[ABHVZ’15], Betweenness [AGV’15], Hamming Closest Pair [AW15], Reg. Expr. Matching
[BI16,BGL17], and a ton more!

6

The Orthogonal Vectors

Problem: Definition and

Hardness Conjecture

7

OV: Problem Description

 Two vectors 𝑢, 𝑣 ∈ {0,1}𝑑 (or binary strings of length 𝑑) are orthogonal if σ𝑖∈ 𝑑 𝑢𝑖 ⋅ 𝑣𝑖 = 0

 Sum is considered over ℝ (not 𝔽2)

 Equivalently, they are orthogonal if ڀ𝑖∈ 𝑑 𝑢𝑖 ∧ 𝑣𝑖 = 0 (there is no position at which both

vectors have a 1)

Problem:

 Input: Two lists 𝐴, 𝐵 of 𝑛 𝑑-dimensional 0 − 1 vectors

 Output: “Accept” iff there is an orthogonal pair 𝑢, 𝑣 ∈ 𝐴 × 𝐵

*problem has been considered over other discrete structures too, like the rings ℤ𝑁 (esp.
in Williams, Yu (SODA ‘14)), but not our focus today

8

What is 𝒅?

 Obvious brute-force running time of 𝑂 𝑛2 ⋅ 𝑑

 If 𝑑 is sufficiently smaller than 𝑛 (for e.g., 𝑑 ≪ log𝑛), we must have redundant vector copies in each list, so we
can weed them out first and then brute-force

 In particular, it follows that if 𝑑 ≤ 1 − 𝜀 log𝑛 for some constant 𝜀 > 0, then there is a 𝑂 𝑛2−𝜀 ⋅ 𝑑 = ෨𝑂(𝑛2−𝜀) time
algo for 𝑂𝑉𝑛,𝑑

 Natural question: What about 𝑑 = 𝑐 log𝑛 for any constant 𝑐?

 Specifically, is there a universal constant 𝜀 > 0 so that for every constant 𝑐, 𝑂𝑉𝑛,𝑐 log 𝑛 can be solved in ෨𝑂(𝑛2−𝜀)
time?

 Orthogonal Vectors Conjecture (OVC) [R. Williams, Theor. Comp. Sci. ‘05]: No, there is not!

Remarks:

 Think of this regime (𝑑 = 𝑂(log𝑛)) as the smallest possible for which 𝑂𝑉𝑛,𝑑 becomes interesting. OVC says that
even in this case, “truly sub-quad. time” is impossible

 Note the order of quantifiers here! Because for a given constant 𝑐, ෨𝑂(𝑛2−𝜀𝑐) is possible, for 𝜀𝑐 depending on 𝑐

9

Connection to SETH: why

we believe in OVC

10

Strong Exponential Time Hypothesis: Introduction

 𝑘 − 𝐶𝑁𝐹 − 𝑆𝐴𝑇:

 Input: Boolean variables 𝑥1, … , 𝑥𝑛 and a formula in the conjunctive normal form i.e. of the
form 𝐶1 ∧ ⋯∧ 𝐶𝑚 where each 𝐶𝑖 is the logical 𝑂𝑅 of at most 𝑘 variables (or their negations)

 Output: “Accept” iff there exists an assignment to these variables on which this formula
evaluates to 1

 Obvious 𝑂(2𝑛 ⋅ 𝑚𝑛) algorithm

 SETH asserts that we can’t do much better for arbitrary 𝑘. More precisely:

 SETH: for every 𝜀 > 0, there is a 𝑘 such that 𝑘 − 𝐶𝑁𝐹 − 𝑆𝐴𝑇 on 𝑛 variables, 𝑚 clauses
cannot be solved in 2 1−𝜀 𝑛 ⋅ poly(𝑚) time

 Equivalently, if there is a 2 1−𝜀 𝑛 ⋅ poly(𝑚) time algorithm for some 𝜀 > 0 that can solve
SAT on CNF Formulas (for all 𝑘) on 𝑛 variables and 𝑚 clauses , then SETH is false

11

SETH implies OVC!

 Contrapositive: Want to show that a “fast” algo for OV yields “fast” algo for SAT

 In other words, given a SAT instance on 𝑛 variables 𝑥1, … , 𝑥𝑛 and 𝑚 clauses 𝐶1, … , 𝐶𝑚, want to construct an OV instance

on which we can apply this supposed “fast” algo

 This OV instance will have lists 𝐴, 𝐵 of size 𝑁 = 2𝑛/2, consisting of binary strings (vectors) of length 𝑚

 How to define these vectors? Use “split and list”. Split variable set into halves: {𝑥1, … , 𝑥𝑛/2} and {𝑥𝑛/2+1, … , 𝑥𝑛}. 𝐴 then

consists of vectors 𝑢𝛼, where 𝛼 is a partial assignment that assigns bits to the first half of variables. 𝐵 consists of the set
of 𝑣𝛽

 1, if 𝛼 does not satisfy 𝐶𝑖 1, if 𝛽 does not satisfy 𝐶𝑖

0, otherwise 0, otherwise

 So 𝑢𝛼 , 𝑣𝛽 are orthogonal iff 𝛼 ∪ 𝛽 satisfies all the clauses

 Note that it takes 𝑂(2𝑛/2 ⋅ 𝑚) time to go from a given SAT instance to defining these lists 𝐴, 𝐵

 If there is an algo that solves 𝑂𝑉𝑁,𝑑 in ෨𝑂(𝑁2−𝜀) time, then SAT, after above reduction, on any 𝑘 can be solved in time

𝑂 2𝑛/2 ⋅ 𝑚 + (2𝑛/2
2−𝜀

) = 𝑂 2
1−

𝜀
2
𝑛

 This contradicts SETH!

12

𝑢𝛼 𝑖 = 𝑣𝛽 𝑖 =

Connection to Other
Quadratic Time

Problems

13

More than just hardness: “completeness”!

 Not only are many problems 𝑂𝑉-hard, a decent number are even known to be “sub-

quadratically equivalent” to OV (typically, latter is difficult to show than just hardness)

 That is, ෨𝑂 𝑛2−𝜀 time algorithm for one implies ෨𝑂 𝑛2−𝛿 time algorithm for the other,

and vice-versa

 Of these, one simple & immediate example is Subset Query: given 𝑛 “query” sets
𝑆1, … , 𝑆𝑛 ⊆ [𝑑] and n “database” sets 𝑇1, … , 𝑇𝑛 ⊆ 𝑑 , is 𝑆𝑖 ⊆ 𝑇𝑗 for some 𝑖, 𝑗?

 Note that 𝑆𝑖 ⊆ 𝑇𝑗 iff 𝑆𝑖 ∩ 𝑇𝑗 = ∅

 To see the equivalence with OV, simply think of the sets as binary vectors and flip the

bits of the “database” vectors

 The reduction is clearly 𝑂(𝑛 ⋅ 𝑑) time and so, sub-quadratic equivalence follows

14

Chen and Williams (SODA ’18): An equivalence class for OV

Theorem: Either all of the following can be solved in truly sub-quadratic time, or none of the
following:

 (OV) Finding an orthogonal pair among 𝑛 vectors.

 (Min-IP/Max-IP) Finding a red-blue pair of vectors with minimum (respectively, maximum)
inner product, among 𝑛 vectors.

 (Exact-IP) Finding a red-blue pair of vectors with inner product exactly equal to a given
integer, among 𝒏 vectors.

 (Apx-Min-IP/Apx-Max-IP) Finding a red-blue pair of vectors that is a 100-approximation to
the minimum (resp. maximum) inner product, among 𝑛 vectors.

 (Approximate Bichromatic ℓ𝑝-Closest Pair) Approximating the ℓ𝑝 -closest red-blue pair (for
a constant 𝑝 ∈ 1,2), among 𝑛 points.

 (Approximate ℓ𝑝 -Furthest Pair) Approximating the ℓ𝑝 -furthest pair (for a constant 𝑝 ∈
1,2), among 𝑛 points.

… and more

15

Uses

CC

Uses

LSH

𝚺𝟐 Communication Protocols

 Want to compute a function 𝐹 ∶ 𝒳 × 𝒴 → {0, 1}

 Like 𝐼𝑃𝑑,𝑚, which on given two binary strings of length 𝑑, checks if their IP is the integer 𝑚

 A Σ2
𝑐𝑐 protocol Π for 𝐹 is specified as follows:

 Two players, Alice (holds input 𝑥 ∈ 𝒳)and Bob (holds 𝑦 ∈ 𝒴)

 Two “provers” Merlin and Megan

 Merlin sends a string 𝑎 ∈ {0,1}𝑚1 and Megan sends a string 𝑏 ∈ {0,1}𝑚2 (functions of 𝑥 and 𝑦) to both
Alice and Bob

 Alice and Bob then communicate ℓ bits with each other, and Alice decides whether to accept or
reject the pair (a, b)

 𝐹(𝑥, 𝑦) = 1 iff there exists a string 𝑎 from Merlin, such that for all strings 𝑏 from Megan, Alice
accepts (𝑎, 𝑏) after communications with Bob

 Protocol Π is computationally-efficient, if both Alice and Bob’s response functions can be
computed in polynomial time with respect to their input length

16

17

Alice Bob

Merlin

sends 𝑎 ∈
{0,1}𝑚1

Megan

sends 𝑏 ∈
{0,1}𝑚2

…

ℓ rounds of communication

Then Alice decides whether to accept or reject (𝑎, 𝑏)

𝐹 𝑥, 𝑦 = 1 iff ∃ string 𝑎 from Merlin, such that for all strings 𝑏 from Megan, Alice accepts (𝑎, 𝑏)

𝑥 ∈ 𝒳 𝑦 ∈ 𝒴

0/1

0/1

0/1

0/1

Efficient 𝚺𝟐 protocol ⇒ Sub-quadratic Reduction to OV

 𝑤1, 𝑤2, . . . , 𝑤2ℓ be all possible communication transcripts between Alice and Bob

 Given 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, generate vector 𝑅𝑥 𝑎, 𝑏 , 𝑅𝑦(𝑎, 𝑏) ∈ {0,1}2
ℓ

as follows:

 for all 𝑎, 𝑅𝑥 𝑎, 𝑏 𝑖 = 1 iff transcript 𝑤𝑖 is consistent with Alice’s input 𝑥, and 𝑤𝑖 makes Alice reject

 Similarly, 𝑅𝑦 𝑎, 𝑏 𝑖 = 1 iff 𝑤𝑖 is consistent with (Bob’s input y)

 Only one 𝑤𝑖 is consistent with both 𝑥 and 𝑦 given the pair 𝑎, 𝑏 (transcript fixed once 𝑥, 𝑦, 𝑎, 𝑏 are)

 So 𝑅𝑥 𝑎, 𝑏 , 𝑅𝑦(𝑎, 𝑏) are orthogonal iff Alice accepts the pair 𝑎, 𝑏

 Suppose given Exact-𝐼𝑃𝑚 instance 𝐼 with sets 𝐴 and 𝐵 of 𝑛 vectors from {0,1}𝑑

 Idea is to reduce 𝐼 to several (but not too many) instances of OV: 𝐼 is a yes instance iff one of these several
OV instances is a yes instances

 enumerate Merlin’s possible strings 𝑎 ∈ {0, 1}𝑚1 ; 𝑅𝑥 𝑎,⋅ denotes the concatenation of all 𝑅𝑥 𝑎, 𝑏 ’s 𝑏 ∈ {0,1}𝑚2.
𝑅𝑦 𝑎,⋅ is defined similarly

 𝐴𝑎 be the set of all 𝑅𝑥 𝑎,⋅ , 𝐵𝑎 the set of all 𝑅𝑦 𝑎,⋅

 𝐼 is a yes instance if and only if some pair (𝐴𝑎, 𝐵𝑎) is a yes instance for OV

18

Requires a

little argument

𝚺𝟐 Protocol for Exact-𝑰𝑷: Simple Idea

Block them up into 𝑟 parts of length 𝑑/𝑟 each. Let Merlin send across (ideally) the vector of IPs
of blocks (Ψ1, … ,Ψ𝑟) and Megan send across an index 𝑗 ∈ [𝑟].

Alice rejects immediately if the sum of Ψ𝑖 doesn’t match with 𝑚

Otherwise, Alice checks if the 𝑗th block IP (i.e. that of 𝑥𝑗 and 𝑦𝑗) matches what Merlin claims it
to be i.e., Ψ𝑗 and accepts Merlin & Megan’s claim iff Ψ𝑗 is indeed ⟨𝑥𝑗 , 𝑦𝑗⟩

Protocol correctly decides Exact-𝐼𝑃𝑑,𝑚

19

𝑥

𝑦

𝑑/𝑟

Ψ1 Ψ2
Ψ𝑟

Combining things together

 Just left to check that the reduction from Exact-𝐼𝑃 to OV is indeed sub-quadratic

 That is, given a universal constant 𝛿 > 0 such that for all constants 𝑐′ , 𝑂𝑉𝑛,𝑐′log 𝑛 can

be solved in 𝑛2−𝛿 time. Need to find a universal constant 𝛿′ > 0 such that for all

constants 𝑐 , 𝐼𝑃𝑐  log 𝑛,𝑚 can be solved in 𝑛2−𝛿
′

time

 This is done by analysing the efficiency of the Σ2 protocol described earlier, and that

of the process of obtain the reduction to OV from the protocol

 Can be done by setting the right 𝑟 (turns out to be about log 𝑛)

20

One Fast(er) algorithm

for Orthogonal Vectors
(Don’t worry, still not violating OVC)

21

Fast Algorithm for OV

 Reminder: OVC states that there is no universal constant 𝜀 > 0 so that for every
constant 𝑐, 𝑂𝑉𝑛,𝑐 log 𝑛 can be solved in ෨𝑂(𝑛2−𝜀) time?

 But for a given 𝑐, one may still hope for ෨𝑂(𝑛2−𝜀𝑐) time

 And indeed, Abboud, R. Williams, and Yu (SODA ‘15) prove the following:

 Theorem: For Boolean vectors of dimension 𝑑 = 𝑐(𝑛) log 𝑛, OV can be solved in

𝑛
2−

1

𝑂 log 𝑐 𝑛 time by a randomized algorithm that is correct with high probability

 T. M. Chan and R. Williams (SODA ‘16) derandomize this:

 Theorem: There is a deterministic algorithm for 𝑂𝑉𝑛, 𝑑= 𝑐(𝑛) 𝑙𝑜𝑔 𝑛 that runs in 𝑛
2−

1

𝑂 log 𝑐 𝑛

time, provided 𝑑 ≤ 2 log 𝑛 𝑜 1

22

All hail the polynomial method

 Checking if a pair of vectors 𝑥𝑖 , 𝑦𝑗 ∈ 𝐴 × 𝐵 is orthogonal is the formula

𝐸 𝑥𝑖 , 𝑦𝑗 = ⋀𝑘=1
𝑑 (¬𝑥𝑖[𝑘] ∨ ¬𝑦𝑗[𝑘])

 Block them up into 𝑠 parts 𝐴1, … , 𝐴𝑠 & 𝐵1, … , 𝐵𝑠, each containing 𝑛/𝑠 vectors (𝑠 tbd)

 Write down the formula that evaluates if there is an orthogonal pair in 𝐴𝑖 × 𝐵𝑗 (big 𝑂𝑅 of 𝑠2

pairs of 𝐸(⋅,⋅))

 Convert that formula into a polynomial, of not-too-large degree! How?

 Razborov & Smolensky in the 80s figured out low-degree “probabilistic” polynomials that
“approximate” 𝐴𝑁𝐷 and 𝑂𝑅 functions really well

 Finally, set 𝑠 accordingly to use “fast rectangular matrix multiplication” by Coppersmith

(∃ constant 𝐶 ≈ 0.172 s.t. multiplication of an 𝑁 × 𝑁𝐶 matrix with an 𝑁𝐶 × 𝑁 matrix can be
done using ෨𝑂(𝑁2) arithmetic operations)

23

Fast Algorithms for Other Quadratic-Time Problems

 Alman, Chan and R. Williams (FOCS ‘16) give faster than brute-force algorithms for

other problems we’ve discussed today:

Min-IP & Max-IP, Exact-IP, Bichromatic-ℓ𝑝-Closest-Pair, ℓ𝑝-Furthest-Pair

 This time using Probabilistic Polynomial Threshold Functions (PTFs) (so yes, more

polynomial method)

24

All-Pairs Shortest Paths
and The Sub-cubic

World

25

A Cubic Cousin and A Quadratic Sibling

 Even more is known about APSP. The following problems are “sub-cubically equivalent” to APSP:

Negative Triangle, Triangle Listing, Shortest Cycle, 2nd Shortest Path, Max Subarray, Graph Median, Graph
Radius and Wiener Index

 Main paper is by V. & R. Williams (FOCS ‘10)

 An excellent resource for all things fine-grained related is the ICM 2018 survey of V. Williams

 3-SUM: given a set 𝑆 of 𝑛 integers from {−𝑛4, . . . , 𝑛4}, determine whether there are 𝑥, 𝑦, 𝑧 ∈ 𝑆 such that 𝑥 + 𝑦 +
𝑧 = 0

 a simple 𝑂(𝑛2 log 𝑛) time enumeration algorithm: sort 𝑆 and then for every 𝑥, 𝑦 ∈ 𝑆, check if −𝑧 ∈ 𝑆 using
binary search

 3-SUM Hypothesis (formulated in early 90s): 3-SUM on 𝑛 integers in {−𝑛4, . . . , 𝑛4} cannot be solved in
𝑂(𝑛2−𝜀) time for any 𝜀 > 0 by a randomized algorithm

 Actually, it seems that there is more literature on APSP and 3-SUM than on OV

 Many problems in comp. geom. Known to be 3-SUM-hard, including 3-Collinearity Testing

 No relation known between 3-SUM, APSP, and SETH however

26

Thank you for

listening!

