Orthogonal Vectors and the Subquadratic World

Deepanshu Kush

June 9, 2020

Outline of the talk

- Motivation: Fine-grained complexity
- Orthogonal Vectors (OV) problem definition and OV Conjecture
- Connection to SETH
- Connection to other quadratic time problems
- A couple reductions, and examples
- The cubic cousin, APSP (if time permits)

Motivation: Finegrained Complexity

String Problems

- Edit distance:
 - between two strings, defined as the min number of insertions, deletions or substitutions of symbols needed to transform one string into another
 - applications in computational biology, natural language processing and information theory
 - Simple quadratic-time DP algorithm, but even the best one takes $\tilde{O}(n^2)$ time
- Longest Common Subsequence (similar story)
- Sequence local alignment:
 - Given two sequence of bases AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Compute an "alignment":

• Again DP takes $O(n^2)$ time

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

String Problems (contd.)

So, no $\tilde{O}(n^{2-\varepsilon})$ algorithm known for Edit distance, Longest Common Subsequence or Sequence local alignment

Turns out this is a recurring theme for many problems in computational geometry too, like given n points, checking if some 3 are collinear (and many more geometry problems, as we shall see today)

Even for certain graph problems like calculating the diameter of a sparse (O(n) edges) graph

So could the hardness of solving these string problems and geometry problems in truly sub-quadratic time be related? Are we stuck on all of them for the **same underlying reason**?

If so, parallels with NP-hardness? Knapsack, TSP, colouring, Independent Set, Candy Crush(!) are all NP-hard, or in other words, harder than SAT

Could there be a "SAT" for TIME($\tilde{O}(n^2)$), that all these problems are "harder" than? Such a thing as "sub-quadratic" reduction? Like many-one/Turing reductions between NP-complete problems

Identifying one key quadratic problem

• Orthogonal Vectors! (Like "SAT" for TIME($\tilde{O}(n^2)$)?)

• Turns out we can show that a multitude of problems are OV-hard:

Graph diameter [RV'13,BRSVW'18],

eccentricities [AVW'16],

local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [BI'15], LCS, Dyn. time warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching [BI16,BGL17], and a ton more!

The Orthogonal Vectors Problem: Definition and Hardness Conjecture

OV: Problem Description

• Two vectors $u, v \in \{0,1\}^d$ (or binary strings of length d) are orthogonal if $\sum_{i \in [d]} u_i \cdot v_i = 0$

- Sum is considered over \mathbb{R} (not \mathbb{F}_2)
- Equivalently, they are orthogonal if $V_{i \in [d]} u_i \wedge v_i = 0$ (there is no position at which both vectors have a 1)

Problem:

- Input: Two lists A, B of n d-dimensional 0 1 vectors
- O Output: "Accept" iff there is an orthogonal pair $(u, v) \in A \times B$

*problem has been considered over other discrete structures too, like the rings \mathbb{Z}_N (esp. in Williams, Yu (SODA '14)), but not our focus today

What is d?

- Obvious brute-force running time of $O(n^2 \cdot d)$
- If *d* is sufficiently smaller than *n* (for e.g., $d \ll \log n$), we must have redundant vector copies in each list, so we can weed them out first and then brute-force
- In particular, it follows that if $d \le (1 \varepsilon)\log n$ for some constant $\varepsilon > 0$, then there is a $O(n^{2-\varepsilon} \cdot d) = \tilde{O}(n^{2-\varepsilon})$ time algo for $OV_{n,d}$
- Natural question: What about $d = c \log n$ for any constant c?
- Specifically, is there a **universal** constant $\varepsilon > 0$ so that for every constant c, $\partial V_{n,c \log n}$ can be solved in $\tilde{O}(n^{2-\varepsilon})$ time?
- O Orthogonal Vectors Conjecture (OVC) [R. Williams, Theor. Comp. Sci. '05]: No, there is not!

Remarks:

- Think of this regime $(d = O(\log n))$ as the smallest possible for which $OV_{n,d}$ becomes interesting. OVC says that even in this case, "truly sub-quad. time" is impossible
- Note the order of quantifiers here! Because for a given constant c, $\tilde{O}(n^{2-\varepsilon_c})$ is possible, for ε_c depending on c

Connection to SETH: why we believe in OVC

Strong Exponential Time Hypothesis: Introduction

• k - CNF - SAT:

- Input: Boolean variables $x_1, ..., x_n$ and a formula in the conjunctive normal form i.e. of the form $C_1 \land \cdots \land C_m$ where each C_i is the logical OR of at most k variables (or their negations)
- Output: "Accept" iff there exists an assignment to these variables on which this formula evaluates to 1
- Obvious $O(2^n \cdot mn)$ algorithm
- SETH asserts that we can't do much better for arbitrary k. More precisely:
- SETH: for every $\varepsilon > 0$, there is a k such that k CNF SAT on n variables, m clauses cannot be solved in $2^{(1-\varepsilon)n} \cdot \operatorname{poly}(m)$ time
- Equivalently, if there is a $2^{(1-\varepsilon)n} \cdot \text{poly}(m)$ time algorithm for some $\varepsilon > 0$ that can solve SAT on CNF Formulas (for all k) on n variables and m clauses, then SETH is false

SETH implies OVC!

- O Contrapositive: Want to show that a "fast" algo for OV yields "fast" algo for SAT
- O In other words, given a SAT instance on n variables $x_1, ..., x_n$ and m clauses $C_1, ..., C_m$, want to construct an OV instance on which we can apply this supposed "fast" algo
- This OV instance will have lists A, B of size $N = 2^{n/2}$, consisting of binary strings (vectors) of length m
- How to define these vectors? Use "split and list". Split variable set into halves: $\{x_1, ..., x_{n/2}\}$ and $\{x_{n/2+1}, ..., x_n\}$. A then consists of vectors u_{α} , where α is a partial assignment that assigns bits to the first half of variables. B consists of the set of v_{β}

 $u_{\alpha}(i) = \begin{cases} 1, \text{ if } \alpha \text{ does not satisfy } C_i \\ 0, \text{ otherwise} \end{cases} \quad v_{\beta}(i) = \begin{cases} 1, \text{ if } \beta \text{ does not satisfy } C_i \\ 0, \text{ otherwise} \end{cases}$

- So u_{α} , v_{β} are orthogonal iff $\alpha \cup \beta$ satisfies all the clauses
- Note that it takes $O(2^{n/2} \cdot m)$ time to go from a given SAT instance to defining these lists A, B
- If there is an algo that solves $OV_{N,d}$ in $\tilde{O}(N^{2-\varepsilon})$ time, then SAT, after above reduction, on any k can be solved in time

$$O\left(2^{n/2} \cdot m + (2^{n/2})^{2-\varepsilon}\right) = O\left(2^{\left(1-\frac{\varepsilon}{2}\right)n}\right)$$

• This contradicts SETH!

Connection to Other Quadratic Time Problems

More than just hardness: "completeness"!

- Not only are many problems OV-hard, a decent number are even known to be "subquadratically equivalent" to OV (typically, latter is difficult to show than just hardness)
- That is, $\tilde{O}(n^{2-\varepsilon})$ time algorithm for one implies $\tilde{O}(n^{2-\delta})$ time algorithm for the other, and vice-versa
- Of these, one simple & immediate example is Subset Query: given n "query" sets $S_1, \dots, S_n \subseteq [d]$ and n "database" sets $T_1, \dots, T_n \subseteq [d]$, is $S_i \subseteq T_j$ for some i, j?
- Note that $S_i \subseteq T_j$ iff $S_i \cap \overline{T_j} = \emptyset$
- To see the equivalence with OV, simply think of the sets as binary vectors and flip the bits of the "database" vectors
- The reduction is clearly $O(n \cdot d)$ time and so, sub-quadratic equivalence follows

Chen and Williams (SODA '18): An equivalence class for OV

Theorem: Either all of the following can be solved in truly sub-quadratic time, or none of the following:

- \circ (OV) Finding an orthogonal pair among *n* vectors.
- (Min-IP/Max-IP) Finding a red-blue pair of vectors with minimum (respectively, maximum) inner product, among *n* vectors.
- (Exact-IP) Finding a red-blue pair of vectors with inner product exactly equal to a given integer, among n vectors.
 - (Apx-Min-IP/Apx-Max-IP) Finding a red-blue pair of vectors that is a 100-approximation to the minimum (resp. maximum) inner product, among *n* vectors.
 - (Approximate Bichromatic ℓ_p -Closest Pair) Approximating the ℓ_p -closest red-blue pair (for a constant $p \in [1,2]$), among n points.
 - (Approximate ℓ_p -Furthest Pair) Approximating the ℓ_p -furthest pair (for a constant $p \in [1,2]$), among n points.
 - ... and more

Uses

Uses

LSH

$\boldsymbol{\Sigma}_2$ Communication Protocols

• Want to compute a function $F : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$

- Like $IP_{d,m}$, which on given two binary strings of length d, checks if their IP is the integer m
- A Σ_2^{cc} protocol Π for F is specified as follows:
 - Two players, Alice (holds input $x \in \mathcal{X}$) and Bob (holds $y \in \mathcal{Y}$)
 - Two "provers" Merlin and Megan
 - Merlin sends a string $a \in \{0,1\}^{m_1}$ and Megan sends a string $b \in \{0,1\}^{m_2}$ (functions of x and y) to both Alice and Bob
 - Alice and Bob then communicate l bits with each other, and Alice decides whether to accept or reject the pair (a, b)
 - F(x, y) = 1 iff there exists a string *a* from Merlin, such that for all strings *b* from Megan, Alice accepts (a, b) after communications with Bob
 - Protocol Π is computationally-efficient, if both Alice and Bob's response functions can be computed in polynomial time with respect to their input length

F(x,y) = 1 iff \exists string *a* from Merlin, such that for all strings *b* from Megan, Alice accepts (a,b)

Efficient Σ_2 protocol \Rightarrow Sub-quadratic Reduction to OV

• $w_1, w_2, \ldots, w_{2^{\ell}}$ be all possible communication transcripts between Alice and Bob

- Given $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, generate vector $R_x(a, b)$, $R_y(a, b) \in \{0,1\}^{2^{\ell}}$ as follows:
 - for all a, $R_x(a,b)_i = 1$ iff transcript w_i is consistent with Alice's input x, and w_i makes Alice reject
 - Similarly, $R_y(a, b)_i = 1$ iff w_i is consistent with (Bob's input y)
- Only one w_i is consistent with both x and y given the pair (a, b) (transcript fixed once x, y, a, b are)
- So $R_x(a, b)$, $R_y(a, b)$ are orthogonal iff Alice accepts the pair (a, b)
- Suppose given Exact- IP_m instance I with sets A and B of n vectors from $\{0,1\}^d$
- Idea is to reduce *I* to several (but not too many) instances of OV: *I* is a yes instance iff one of these several OV instances is a yes instances
- enumerate Merlin's possible strings $a \in \{0, 1\}^{m_1}$; $R_x(a, \cdot)$ denotes the concatenation of all $R_x(a, b)$'s $b \in \{0, 1\}^{m_2}$. $R_y(a, \cdot)$ is defined similarly
- A_a be the set of all $R_x(a,\cdot)$, B_a the set of all $R_y(a,\cdot)$
- I is a yes instance if and only if some pair (A_a, B_a) is a yes instance for OV

_Requires a little argument

Σ_2 Protocol for Exact-*IP*: Simple Idea

Block them up into r parts of length d/r each. Let Merlin send across (ideally) the vector of IPs of blocks ($\Psi_1, ..., \Psi_r$) and Megan send across an index $j \in [r]$.

Alice rejects immediately if the sum of Ψ_i doesn't match with m

Otherwise, Alice checks if the *j*th block IP (i.e. that of x_j and y_j) matches what Merlin claims it to be i.e., Ψ_j and accepts Merlin & Megan's claim iff Ψ_j is indeed $\langle x_j, y_j \rangle$

Protocol correctly decides $Exact-IP_{d,m}$

Combining things together

- Just left to check that the reduction from Exact-*IP* to OV is indeed sub-quadratic
- That is, given a universal constant $\delta > 0$ such that for all constants c', $OV_{n,c'\log n}$ can be solved in $n^{2-\delta}$ time. Need to find a universal constant $\delta' > 0$ such that for all constants c, $IP_{c \log n,m}$ can be solved in $n^{2-\delta'}$ time
- O This is done by analysing the efficiency of the Σ_2 protocol described earlier, and that of the process of obtain the reduction to OV from the protocol
- Can be done by setting the right r (turns out to be about $\log n$)

One Fast(er) algorithm for Orthogonal Vectors

(Don't worry, still not violating OVC)

Fast Algorithm for OV

- Reminder: OVC states that there is no **universal** constant $\varepsilon > 0$ so that for every constant c, $OV_{n,c \log n}$ can be solved in $\tilde{O}(n^{2-\varepsilon})$ time?
- But for a given c, one may still hope for $\tilde{O}(n^{2-\varepsilon_c})$ time
- And indeed, Abboud, R. Williams, and Yu (SODA '15) prove the following:
- **Theorem:** For Boolean vectors of dimension $d = c(n) \log n$, OV can be solved in $n^{\left\{2 \frac{1}{O(\log c(n))}\right\}}$ time by a randomized algorithm that is correct with high probability
- T. M. Chan and R. Williams (SODA '16) derandomize this:
- **Theorem:** There is a deterministic algorithm for $OV_{n, d=c(n) \log n}$ that runs in $n^{\left\{2-\frac{1}{O(\log c(n))}\right\}}$ time, provided $d \leq 2^{\left\{(\log n)^{\left\{o(1)\right\}}\right\}}$

All hail the polynomial method

- Checking if a pair of vectors $(x_i, y_j) \in A \times B$ is orthogonal is the formula $E(x_i, y_i) = \bigwedge_{k=1}^d (\neg x_i[k] \lor \neg y_i[k])$
- O Block them up into s parts $A_1, \dots, A_s \& B_1, \dots, B_s$, each containing n/s vectors (s tbd)
- Write down the formula that evaluates if there is an orthogonal pair in $A_i \times B_j$ (big OR of s^2 pairs of $E(\cdot,\cdot)$)
- Convert that formula into a polynomial, of not-too-large degree! How?
- Razborov & Smolensky in the 80s figured out low-degree "probabilistic" polynomials that "approximate" *AND* and *OR* functions really well
- Finally, set s accordingly to use "fast rectangular matrix multiplication" by Coppersmith

(3 constant $C \approx 0.172$ s.t. multiplication of an $N \times N^C$ matrix with an $N^C \times N$ matrix can be done using $\tilde{O}(N^2)$ arithmetic operations)

Fast Algorithms for Other Quadratic-Time Problems

• Alman, Chan and R. Williams (FOCS '16) give faster than brute-force algorithms for other problems we've discussed today:

Min-IP & Max-IP, Exact-IP, Bichromatic- ℓ_p -Closest-Pair, ℓ_p -Furthest-Pair

• This time using Probabilistic Polynomial Threshold Functions (PTFs) (so yes, more polynomial method)

All-Pairs Shortest Paths and The Sub-cubic World

A Cubic Cousin and A Quadratic Sibling

• Even more is known about APSP. The following problems are "sub-cubically equivalent" to APSP:

Negative Triangle, Triangle Listing, Shortest Cycle, 2nd Shortest Path, Max Subarray, Graph Median, Graph Radius and Wiener Index

- O Main paper is by V. & R. Williams (FOCS '10)
- An excellent resource for all things fine-grained related is the ICM 2018 survey of V. Williams
- 3-SUM: given a set *S* of *n* integers from $\{-n^4, ..., n^4\}$, determine whether there are $x, y, z \in S$ such that x + y + z = 0
- a simple $O(n^2 \log n)$ time enumeration algorithm: sort S and then for every $x, y \in S$, check if $-z \in S$ using binary search
- **3-SUM Hypothesis (formulated in early 90s):** 3-SUM on *n* integers in $\{-n^4, ..., n^4\}$ cannot be solved in $O(n^{2-\varepsilon})$ time for any $\varepsilon > 0$ by a randomized algorithm
- O Actually, it seems that there is more literature on APSP and 3-SUM than on OV
- Many problems in comp. geom. Known to be 3-SUM-hard, including 3-Collinearity Testing
- No relation known between 3-SUM, APSP, and SETH however

Thank you for listening!

