Orthogonal Vectors and the
Subquadratic World

Deepanshu Kush
June 9, 2020

Ouvutline of the talk
7\

O O O O OO

Motivation: Fine-grained complexity

Orthogonal Vectors (OV) problem definition and OV Conjecture
Connection to SETH

Connection to other quadratic time problems

A couple reductions, and examples

The cubic cousin, APSP (if time permits)

Motivation: Fine-
grained Complexity

String Problems

7\

O Edit distance:

O between two strings, defined as the min number of insertions, deletions or substitutions of symbols needed
to transform one string into another

O applications in computational biology, natural language processing and information theory
O Simple quadratic-time DP algorithm, but even the best one takes 0(n?) time
O Longest Common Subsequence (similar story)

O Sequence local alignment:
O Given two sequence of bases

Compute an “alignment:
O Again DP takes 0(n?) time

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC——-
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

String Problems (conid.)
N

So, no 0(n?~¢) algorithm known for Edit distance, Longest Common Subsequence or Sequence local alignment

Turns out this is a recurring theme for many problems in computational geometry too, like given n points, checking if some
3 are collinear (and many more geometry problems, as we shall see today)

Even for certain graph problems like calculating the diameter of a sparse (0(n) edges) graph

So could the hardness of solving these string problems and geometry problems in truly sub-quadratic time be related? Are
we stuck on all of them for the same underlying reason?

If so, parallels with NP-hardness2 Knapsack, TSP, colouring, Independent Set, Candy Crush(!) are all NP-hard, or in other
words, harder than SAT

Could there be a “SAT” for TIME(0(n?)), that all these problems are “harder” than2 Such a thing as “sub-quadratic”
reduction? Like many-one/Turing reductions between NP-complete problems

Identifying one key quadratic problem

7\

O Orthogonal Vectors! (Like “SAT” for TIME(O(n?))?)

O Turns out we can show that a multitude of problems are OV-hard:
Graph diameter [RV'13,BRSVW'18],

eccentricities [AVW'16],

local alignment, longest common substring™* [AVW'14], Frechet distance [Br'14], Edit
distance [BI'15], LCS, Dyn. time warping [ABV'15, BrK'15], subtree isomorphism
[ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching
[BI16,BGL1/7], and a ton morel

The Orthogonal Vectors
Problem: Definition and
Hardness Conjecture

OV: Problem Description

7\

O Two vectorsu,v € {0,1}¢ (or binary strings of length d) are orthogonal if Die[a) Wi " Vi =0
O Sum is considered over R (not FF,)

O Equivalently, they are orthogonal if V;eqyw; A v; = 0 (there is no position at which both
vectors have a 1)

Problem:
O Input: Two lists 4, B of n d-dimensional 0 — 1 vectors
O Qutput: YAccept” iff there is an orthogonal pair (u,v) € A X B

*problem has been considered over other discrete structures 100, like the rings Zy (esp.
in Williams, Yu (SODA ‘14)), but not our focus today

What is d?
7\

O Obvious brute-force running time of 0(n? - d)

O If d is sufficiently smaller than n (for e.g., d < logn), we must have redundant vector copies in each list, so we
can weed them out first and then brute-force

O In particular, it follows that if d < (1 — €)logn for some constant € > 0, then there is a 0(n?>~¢ - d) = 0(n?7¢) time
algo for OV, 4

O Natural question: What about d = clogn for any constant c¢

O Specifically, is there a universal constant e > 0 so that for every constant ¢, 0V, 105, can be solved in 0(n?79)
timee

O Orthogonal Vectors Conjecture (OVC) [R. Williams, Theor. Comp. Sci. ‘05]: No, there is not!

Remarks:

O Think of this regime (d = 0(logn)) as the smallest possible for which 0V, ; becomes interesting. OVC says that
even in this case, “truly sub-quad. time"” is impossible

O Note the order of quantifiers here! Because for a given constant ¢, 0(n?%¢) is possible, for e, depending on ¢

Connection to SETH: why
we believe in OVC

Strong Exponential Time Hypothesis: Introduction

7\

O O O

k — CNF — SAT:
O Input: Boolean variables x4, ..., x, and a formula in the conjunctive normal form i.e. of the
form C; A -+ A C,, Where each C; is the logical OR of at most k variables (or their negations)
O Output: “Accept” iff there exists an assignment to these variables on which this formula
evaluates to 1
Obvious 0(2™ - mn) algorithm

SETH asserts that we can't do much better for arbitrary k. More precisely:

SETH: for every € > 0, there is a k such that k — CNF — SAT on n variables, m clauses
cannot be solved in 2187 . poly(m) time

Equivalently, if there is a 2178 . poly(m) time algorithm for some ¢ > 0 that can solve
SAT on CNF Formulas (for all k) on n variables and m clauses , then SETH is false

SETH implies OVCl!
N

Conftrapositive: Want to show that a “fast” algo for OV yields “fast” algo for SAT

In other words, given a SAT instance on n variables x4, ..., x, and m clauses C, ..., C,,,, want to construct an OV instance
on which we can apply this supposed "“fast” algo

This OV instance will have lists 4, B of size N = 2"/2, consisting of binary strings (vectors) of length m

How to define these vectorse Use “split and list”. Split variable set into halves: {x;, ..., x, 2} and {xy, /241, ..., X }. A then
consists of vectors u,, where a is a partial assignment that assigns bits to the first half of variables. B consists of the set
of v

B

_ 1, if @ does not satisfy ¢; _ 1, if B does not satisfy C;
ug (i) = . v (i) = .
0, otherwise 0, otherwise

SO ugy, vg are orthogonal iff a U g safisfies all the clauses

Note that it takes 0(2™/? - m) time to go from a given SAT instance to defining these lists A, B

If there is an algo that solves 0Vy 4 in 0(N27¢) time, then SAT, after above reduction, on any k can be solved in time
0(22 - m + (272)"%) = 0(2(1-2))

This contradicts SETH!

Connection to Other
Quadratic Time
Problems

More than just hardness: “completeness”!

7\

Not only are many problems OV-hard, a decent number are even known to be “sub-
quadratically equivalent” to OV (typically, latter is difficult fo show than just hardness)

That is, 0(n?~¢) time algorithm for one implies 6(n2‘5) time algorithm for the other,
and vice-versa

Of these, one simple & immediate example is Subset Query: given n ‘query” sets
51, -,y € [d] and n "database” sets Ty, ..., T, € [d], is S; € T; for some i, j¢

Note that S; € T; iff S, N T; = @

To see the equivalence with OV, simply think of the sets as binary vectors and flip the
bits of the “"database” vectors

The reductionis clearly 0(n - d) fime and so, sub-quadratic equivalence follows

Chen and Williams (SODA '18): An equivalence class for OV

7\

1h”eorem: Either all of the following can be solved in truly sub-quadratic time, or none of the
ollowing:

O (OV) Finding an orthogonal pair among n vectors.

O (Min-IP/Max-IP) Finding a red-blue pair of vectors with minimum (respectively, maximum)
inner product, among n vectors.

O (Exact-IP) Finding a red-blue pair of vectors with inner product exactly equal to a given
integer, among n vectors.

O (Apx-Min-IP/Apx-Max-IP) Finding a red-blue pair of vectors that is a 100-approximation to
the minimum (resp. maximum) Inner product, among n vectors.

O (Approximate Bichromatic £,-Closest Pair) Approximating the £, -closest red-blue pair (for
a constant p € [1,2]), among n points.

O (Approximate £, -Furthest Pair) Approximating the £, -furthest pair (for a constant p €
[1,2]), among n pom’rs

.. and more

X, Communication Protocols

7\

O Want to compute a functfion F: X x Y — {0,1}

O Like IPg,,, Which on given two binary strings of length d, checks if their IP is the infeger m
O A X5 protocol II for F is specified as follows:

O
O
O

Two players, Alice (holds input x € X)and Bob (holds y € Y)
Two “provers” Merlin and Megan

Merlin sends a string a € {0,1}™t and Megan sends a string b € {0,1}™2 (functions of x and y) to both
Alice and Bob

Alice and Bob then communicate { bits with each other, and Alice decides whether to accept or
reject the pair (a, b)

F(x,y) = 1iff there exists a string a from Merlin, such that for all strings b from Megan, Alice
accepts (a, b) after communications with Bob

Protocol IT is computationally-efficient, if both Alice and Bob's response functions can be
computed in polynomial time with respect to their input length

x €EX yeTY

Merlin Megan

sends a € sends b €
0,1} 0,112

i

£ rounds of communication

Then Alice decides whether to accept or reject (a, b) -
F(x,y) = 1iff 3 string a from Merlin, such that for all strings b from Megan, Alice accepts (a, b)

Efficient X, protocol = Sub-quadratic Reduction to OV

7\

O

© OO0 OO

o O

w1, Wy, ..., Wye De all possible communication transcripts between Alice and Bob

Given x € X and y € Y, generate vector R,(a,b), R,(a,b) € {0,1}2{ as follows:
O foralla, R.(a,b); = 1iff transcript w; is consistent with Alice’s input x, and w; makes Alice reject
O Similarly, Ry(a,b); = 1iff w; is consistent with (Bob's input y)
Only one w; is consistent with both x and y given the pair (a, b) (transcript fixed once x,y,a, b are)
SO R,(a,b), Ry(a, b) are orthogonal iff Alice accepts the pair (a, b)
Suppose given Exact-IP,, instance I with sets A and B of n vectors from {0,1}¢

ldea is to reduce I to several (but not foo many) instances of OV: I is a yes instance iff one of these several
OV instances is a yes instances

enumerate Merlin’s possible strings a € {0,1}™ ; R,.(a,”) denotes the concatenation of all R,.(a,b)'s b € {0,1}™2.

Ry (a,) is defined similarly
A, be the set of all R, (a,"). B, the set of all Ry (a,") Requires a
1 is a yes instance if and only if some pair (4,, B,) is a yes instance for OV /IITTIe argument

X, Protocol for Exact-I1P: Simple Idea

7\

Block them up into r parts of length d/r each. Let Merlin send across (ideally) the vector of IPs
of blocks (¥4, ..., ¥,,) and Megan send across an index j € [r].

Alice rejects |mmed|o’rely if the sum of ¥; doesn’t match with m

Otherwise, Alice checks if the jth block IP (| e. that of x; and y;) matches what Merlin claims it
fo be i.e., ¥; and accepts Merlin & Megan’s claim iff LIJ is indeed (xj,y;)

Protocol correctly decides Exact-I1P;

Combining things together
"\

Just left to check that the reduction from Exact-IP to OV is indeed sub-quadratic

That is, given a universal constant § > 0 such that for all constants ¢’ , OV, 1144, CAN

be solved in n279 time. Need to find a universal constant 8 > 0 such that for all
constants ¢, IP; 1og n,m CAN e solved in n?=% time

This is done by analysing the efficiency of the X, protocol described earlier, and that
of the process of obtain the reduction to OV from the protocol

Can be done by setting the right r (turns out to be about logn)

20

One Fasi(er) algorithm
for Orthogonal Vectors

(Don’t worry, still not violating OVC)

Fast Algorithm for OV
7\

O O O

Reminder: OVC states that there is no universal constant e > 0 so that for every
constant ¢, OV, 1050 CON be solved in 0(n*~¢) time?

But for a given ¢, one may still hope for 0(n?%¢) time

And indeed, Abboud, R. Williams, and Yu (SODA ‘15) prove the following:
Theorem: For Boolean vectors of dimensiond = c(n) logn, OV can be solved in
n{z_m} time by a randomized algorithm that is correct with high probability
T. M. Chan and R. Williams (SODA ‘16) derandomize this:

1
Theorem: There is a deterministic algorithm for OVy, 4= ¢(n) 10gn that runsin n{z O(log C(nD}
time, provided d < 2{(ogm®7}

22

All hail the polynomial method
N

N
O Checking if a pair of vectors (x;,y;) € A x B is orthogonal is the formula
E(x;,y) = Nicy (2xi[k] v =y [k])
O Block them up into s parts 44, ..., A; & By, ..., B;, each containing n/s vectors (s tbd)
O Write down the formula that evaluates if there is an orthogonal pairin 4; x B; (big OR of s?
pairs of E(:,"))
O Convert that formula into a polynomial, of not-too-large degree! How?
O Razborov & Smolensky in the 80s figured out low-degree “probabilistic” polynomials that
“approximate” AND and OR functions really well
O Finally, set s accordingly to use “fast rectangular matrix multiplication” by Coppersmith
(3 constant € = 0.172 s.t. multiplication of an N x N¢ matrix with an N¢ x N matrix can be
done using O(N?) arithmetic operations)
J

23

Fast Algorithms for Other Quadratic-Time Problems

~
O Alman, Chan and R. Williams (FOCS ‘16) give faster than brute-force algorithms for
other problems we've discussed today:
Min-IP & Max-IP, Exact-IP, Bichromatic-£,-Closest-Pair, £,,-Furthest-Pair
O This time using Probabilistic Polynomial Threshold Functions (PTFs) (so yes, more
polynomial method)
J

24

All-Pairs Shortest Paths
and The Sub-cubic
World

A Cubic Cousin and A Quadratic Sibling
"\

\
O Even more is known about APSP. The following problems are “sub-cubically equivalent” to APSP:
Negative Triangle, Triangle Listing, Shortest Cycle, 2nd Shortest Path, Max Subarray, Graph Median, Graph

Radius and Wiener Index
O Main paperis by V. & R. Williams (FOCS ‘10)
O An excellent resource for all things fine-grained related is the ICM 2018 survey of V. Williams
@) 3—SUIv(\): given a set S of nintegers from {—n?*,...,n*}, determine whether there are x,y,z € Ssuchthatx + y +

z =
O asimple 0(n? logn) time enumeration algorithm: sort S and then for every x,y € S, checkif —z € S using

binary search
O 3-SUM Hypothesis (formulated in early 90s): 3-SUM on n integers in {—n*,...,n*} cannot be solvedin

0(n?~%) time for any ¢ > 0 by a randomized algorithm
O Actudlly, it seems that there is more literature on APSP and 3-SUM than on OV
O Many problems in comp. geom. Known to be 3-SUM-hard, including 3-Collinearity Testing
O Norelation known between 3-SUM, APSP, and SETH however

J

26

Thank you for
listening!

