
Orthogonal Vectors and the

Subquadratic World
Deepanshu Kush

June 9, 2020

Outline of the talk

 Motivation: Fine-grained complexity

 Orthogonal Vectors (OV) problem definition and OV Conjecture

 Connection to SETH

 Connection to other quadratic time problems

 A couple reductions, and examples

 The cubic cousin, APSP (if time permits)

2

Motivation: Fine-

grained Complexity

3

String Problems

 Edit distance:

 between two strings, defined as the min number of insertions, deletions or substitutions of symbols needed
to transform one string into another

 applications in computational biology, natural language processing and information theory

 Simple quadratic-time DP algorithm, but even the best one takes ෨𝑂 𝑛2 time

 Longest Common Subsequence (similar story)

 Sequence local alignment:

 Given two sequence of bases

Compute an “alignment”:

 Again DP takes 𝑂 𝑛2 time

4

String Problems (contd.)

So, no ෨𝑂(𝑛2−𝜀) algorithm known for Edit distance, Longest Common Subsequence or Sequence local alignment

Turns out this is a recurring theme for many problems in computational geometry too, like given 𝑛 points, checking if some
3 are collinear (and many more geometry problems, as we shall see today)

Even for certain graph problems like calculating the diameter of a sparse (𝑂 𝑛 edges) graph

So could the hardness of solving these string problems and geometry problems in truly sub-quadratic time be related? Are
we stuck on all of them for the same underlying reason?

If so, parallels with NP-hardness? Knapsack, TSP, colouring, Independent Set, Candy Crush(!) are all NP-hard, or in other
words, harder than SAT

Could there be a “SAT” for TIME(෨𝑂(𝑛2)), that all these problems are “harder” than? Such a thing as “sub-quadratic”
reduction? Like many-one/Turing reductions between NP-complete problems

5

Identifying one key quadratic problem

 Orthogonal Vectors! (Like “SAT” for TIME(෨𝑂(𝑛2))?)

 Turns out we can show that a multitude of problems are OV-hard:

Graph diameter [RV’13,BRSVW’18],

eccentricities [AVW’16],

local alignment, longest common substring* [AVW’14], Frechet distance [Br’14], Edit

distance [BI’15], LCS, Dyn. time warping [ABV’15, BrK’15], subtree isomorphism

[ABHVZ’15], Betweenness [AGV’15], Hamming Closest Pair [AW15], Reg. Expr. Matching
[BI16,BGL17], and a ton more!

6

The Orthogonal Vectors

Problem: Definition and

Hardness Conjecture

7

OV: Problem Description

 Two vectors 𝑢, 𝑣 ∈ {0,1}𝑑 (or binary strings of length 𝑑) are orthogonal if σ𝑖∈ 𝑑 𝑢𝑖 ⋅ 𝑣𝑖 = 0

 Sum is considered over ℝ (not 𝔽2)

 Equivalently, they are orthogonal if ڀ𝑖∈ 𝑑 𝑢𝑖 ∧ 𝑣𝑖 = 0 (there is no position at which both

vectors have a 1)

Problem:

 Input: Two lists 𝐴, 𝐵 of 𝑛 𝑑-dimensional 0 − 1 vectors

 Output: “Accept” iff there is an orthogonal pair 𝑢, 𝑣 ∈ 𝐴 × 𝐵

*problem has been considered over other discrete structures too, like the rings ℤ𝑁 (esp.
in Williams, Yu (SODA ‘14)), but not our focus today

8

What is 𝒅?

 Obvious brute-force running time of 𝑂 𝑛2 ⋅ 𝑑

 If 𝑑 is sufficiently smaller than 𝑛 (for e.g., 𝑑 ≪ log𝑛), we must have redundant vector copies in each list, so we
can weed them out first and then brute-force

 In particular, it follows that if 𝑑 ≤ 1 − 𝜀 log𝑛 for some constant 𝜀 > 0, then there is a 𝑂 𝑛2−𝜀 ⋅ 𝑑 = ෨𝑂(𝑛2−𝜀) time
algo for 𝑂𝑉𝑛,𝑑

 Natural question: What about 𝑑 = 𝑐 log𝑛 for any constant 𝑐?

 Specifically, is there a universal constant 𝜀 > 0 so that for every constant 𝑐, 𝑂𝑉𝑛,𝑐 log 𝑛 can be solved in ෨𝑂(𝑛2−𝜀)
time?

 Orthogonal Vectors Conjecture (OVC) [R. Williams, Theor. Comp. Sci. ‘05]: No, there is not!

Remarks:

 Think of this regime (𝑑 = 𝑂(log𝑛)) as the smallest possible for which 𝑂𝑉𝑛,𝑑 becomes interesting. OVC says that
even in this case, “truly sub-quad. time” is impossible

 Note the order of quantifiers here! Because for a given constant 𝑐, ෨𝑂(𝑛2−𝜀𝑐) is possible, for 𝜀𝑐 depending on 𝑐

9

Connection to SETH: why

we believe in OVC

10

Strong Exponential Time Hypothesis: Introduction

 𝑘 − 𝐶𝑁𝐹 − 𝑆𝐴𝑇:

 Input: Boolean variables 𝑥1, … , 𝑥𝑛 and a formula in the conjunctive normal form i.e. of the
form 𝐶1 ∧ ⋯∧ 𝐶𝑚 where each 𝐶𝑖 is the logical 𝑂𝑅 of at most 𝑘 variables (or their negations)

 Output: “Accept” iff there exists an assignment to these variables on which this formula
evaluates to 1

 Obvious 𝑂(2𝑛 ⋅ 𝑚𝑛) algorithm

 SETH asserts that we can’t do much better for arbitrary 𝑘. More precisely:

 SETH: for every 𝜀 > 0, there is a 𝑘 such that 𝑘 − 𝐶𝑁𝐹 − 𝑆𝐴𝑇 on 𝑛 variables, 𝑚 clauses
cannot be solved in 2 1−𝜀 𝑛 ⋅ poly(𝑚) time

 Equivalently, if there is a 2 1−𝜀 𝑛 ⋅ poly(𝑚) time algorithm for some 𝜀 > 0 that can solve
SAT on CNF Formulas (for all 𝑘) on 𝑛 variables and 𝑚 clauses , then SETH is false

11

SETH implies OVC!

 Contrapositive: Want to show that a “fast” algo for OV yields “fast” algo for SAT

 In other words, given a SAT instance on 𝑛 variables 𝑥1, … , 𝑥𝑛 and 𝑚 clauses 𝐶1, … , 𝐶𝑚, want to construct an OV instance

on which we can apply this supposed “fast” algo

 This OV instance will have lists 𝐴, 𝐵 of size 𝑁 = 2𝑛/2, consisting of binary strings (vectors) of length 𝑚

 How to define these vectors? Use “split and list”. Split variable set into halves: {𝑥1, … , 𝑥𝑛/2} and {𝑥𝑛/2+1, … , 𝑥𝑛}. 𝐴 then

consists of vectors 𝑢𝛼, where 𝛼 is a partial assignment that assigns bits to the first half of variables. 𝐵 consists of the set
of 𝑣𝛽

 1, if 𝛼 does not satisfy 𝐶𝑖 1, if 𝛽 does not satisfy 𝐶𝑖

0, otherwise 0, otherwise

 So 𝑢𝛼 , 𝑣𝛽 are orthogonal iff 𝛼 ∪ 𝛽 satisfies all the clauses

 Note that it takes 𝑂(2𝑛/2 ⋅ 𝑚) time to go from a given SAT instance to defining these lists 𝐴, 𝐵

 If there is an algo that solves 𝑂𝑉𝑁,𝑑 in ෨𝑂(𝑁2−𝜀) time, then SAT, after above reduction, on any 𝑘 can be solved in time

𝑂 2𝑛/2 ⋅ 𝑚 + (2𝑛/2
2−𝜀

) = 𝑂 2
1−

𝜀
2
𝑛

 This contradicts SETH!

12

𝑢𝛼 𝑖 = 𝑣𝛽 𝑖 =

Connection to Other
Quadratic Time

Problems

13

More than just hardness: “completeness”!

 Not only are many problems 𝑂𝑉-hard, a decent number are even known to be “sub-

quadratically equivalent” to OV (typically, latter is difficult to show than just hardness)

 That is, ෨𝑂 𝑛2−𝜀 time algorithm for one implies ෨𝑂 𝑛2−𝛿 time algorithm for the other,

and vice-versa

 Of these, one simple & immediate example is Subset Query: given 𝑛 “query” sets
𝑆1, … , 𝑆𝑛 ⊆ [𝑑] and n “database” sets 𝑇1, … , 𝑇𝑛 ⊆ 𝑑 , is 𝑆𝑖 ⊆ 𝑇𝑗 for some 𝑖, 𝑗?

 Note that 𝑆𝑖 ⊆ 𝑇𝑗 iff 𝑆𝑖 ∩ 𝑇𝑗 = ∅

 To see the equivalence with OV, simply think of the sets as binary vectors and flip the

bits of the “database” vectors

 The reduction is clearly 𝑂(𝑛 ⋅ 𝑑) time and so, sub-quadratic equivalence follows

14

Chen and Williams (SODA ’18): An equivalence class for OV

Theorem: Either all of the following can be solved in truly sub-quadratic time, or none of the
following:

 (OV) Finding an orthogonal pair among 𝑛 vectors.

 (Min-IP/Max-IP) Finding a red-blue pair of vectors with minimum (respectively, maximum)
inner product, among 𝑛 vectors.

 (Exact-IP) Finding a red-blue pair of vectors with inner product exactly equal to a given
integer, among 𝒏 vectors.

 (Apx-Min-IP/Apx-Max-IP) Finding a red-blue pair of vectors that is a 100-approximation to
the minimum (resp. maximum) inner product, among 𝑛 vectors.

 (Approximate Bichromatic ℓ𝑝-Closest Pair) Approximating the ℓ𝑝 -closest red-blue pair (for
a constant 𝑝 ∈ 1,2), among 𝑛 points.

 (Approximate ℓ𝑝 -Furthest Pair) Approximating the ℓ𝑝 -furthest pair (for a constant 𝑝 ∈
1,2), among 𝑛 points.

… and more

15

Uses

CC

Uses

LSH

𝚺𝟐 Communication Protocols

 Want to compute a function 𝐹 ∶ 𝒳 × 𝒴 → {0, 1}

 Like 𝐼𝑃𝑑,𝑚, which on given two binary strings of length 𝑑, checks if their IP is the integer 𝑚

 A Σ2
𝑐𝑐 protocol Π for 𝐹 is specified as follows:

 Two players, Alice (holds input 𝑥 ∈ 𝒳)and Bob (holds 𝑦 ∈ 𝒴)

 Two “provers” Merlin and Megan

 Merlin sends a string 𝑎 ∈ {0,1}𝑚1 and Megan sends a string 𝑏 ∈ {0,1}𝑚2 (functions of 𝑥 and 𝑦) to both
Alice and Bob

 Alice and Bob then communicate ℓ bits with each other, and Alice decides whether to accept or
reject the pair (a, b)

 𝐹(𝑥, 𝑦) = 1 iff there exists a string 𝑎 from Merlin, such that for all strings 𝑏 from Megan, Alice
accepts (𝑎, 𝑏) after communications with Bob

 Protocol Π is computationally-efficient, if both Alice and Bob’s response functions can be
computed in polynomial time with respect to their input length

16

17

Alice Bob

Merlin

sends 𝑎 ∈
{0,1}𝑚1

Megan

sends 𝑏 ∈
{0,1}𝑚2

…

ℓ rounds of communication

Then Alice decides whether to accept or reject (𝑎, 𝑏)

𝐹 𝑥, 𝑦 = 1 iff ∃ string 𝑎 from Merlin, such that for all strings 𝑏 from Megan, Alice accepts (𝑎, 𝑏)

𝑥 ∈ 𝒳 𝑦 ∈ 𝒴

0/1

0/1

0/1

0/1

Efficient 𝚺𝟐 protocol ⇒ Sub-quadratic Reduction to OV

 𝑤1, 𝑤2, . . . , 𝑤2ℓ be all possible communication transcripts between Alice and Bob

 Given 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, generate vector 𝑅𝑥 𝑎, 𝑏 , 𝑅𝑦(𝑎, 𝑏) ∈ {0,1}2
ℓ

as follows:

 for all 𝑎, 𝑅𝑥 𝑎, 𝑏 𝑖 = 1 iff transcript 𝑤𝑖 is consistent with Alice’s input 𝑥, and 𝑤𝑖 makes Alice reject

 Similarly, 𝑅𝑦 𝑎, 𝑏 𝑖 = 1 iff 𝑤𝑖 is consistent with (Bob’s input y)

 Only one 𝑤𝑖 is consistent with both 𝑥 and 𝑦 given the pair 𝑎, 𝑏 (transcript fixed once 𝑥, 𝑦, 𝑎, 𝑏 are)

 So 𝑅𝑥 𝑎, 𝑏 , 𝑅𝑦(𝑎, 𝑏) are orthogonal iff Alice accepts the pair 𝑎, 𝑏

 Suppose given Exact-𝐼𝑃𝑚 instance 𝐼 with sets 𝐴 and 𝐵 of 𝑛 vectors from {0,1}𝑑

 Idea is to reduce 𝐼 to several (but not too many) instances of OV: 𝐼 is a yes instance iff one of these several
OV instances is a yes instances

 enumerate Merlin’s possible strings 𝑎 ∈ {0, 1}𝑚1 ; 𝑅𝑥 𝑎,⋅ denotes the concatenation of all 𝑅𝑥 𝑎, 𝑏 ’s 𝑏 ∈ {0,1}𝑚2.
𝑅𝑦 𝑎,⋅ is defined similarly

 𝐴𝑎 be the set of all 𝑅𝑥 𝑎,⋅ , 𝐵𝑎 the set of all 𝑅𝑦 𝑎,⋅

 𝐼 is a yes instance if and only if some pair (𝐴𝑎, 𝐵𝑎) is a yes instance for OV

18

Requires a

little argument

𝚺𝟐 Protocol for Exact-𝑰𝑷: Simple Idea

Block them up into 𝑟 parts of length 𝑑/𝑟 each. Let Merlin send across (ideally) the vector of IPs
of blocks (Ψ1, … ,Ψ𝑟) and Megan send across an index 𝑗 ∈ [𝑟].

Alice rejects immediately if the sum of Ψ𝑖 doesn’t match with 𝑚

Otherwise, Alice checks if the 𝑗th block IP (i.e. that of 𝑥𝑗 and 𝑦𝑗) matches what Merlin claims it
to be i.e., Ψ𝑗 and accepts Merlin & Megan’s claim iff Ψ𝑗 is indeed ⟨𝑥𝑗 , 𝑦𝑗⟩

Protocol correctly decides Exact-𝐼𝑃𝑑,𝑚

19

𝑥

𝑦

𝑑/𝑟

Ψ1 Ψ2
Ψ𝑟

Combining things together

 Just left to check that the reduction from Exact-𝐼𝑃 to OV is indeed sub-quadratic

 That is, given a universal constant 𝛿 > 0 such that for all constants 𝑐′ , 𝑂𝑉𝑛,𝑐′log 𝑛 can

be solved in 𝑛2−𝛿 time. Need to find a universal constant 𝛿′ > 0 such that for all

constants 𝑐 , 𝐼𝑃𝑐  log 𝑛,𝑚 can be solved in 𝑛2−𝛿
′

time

 This is done by analysing the efficiency of the Σ2 protocol described earlier, and that

of the process of obtain the reduction to OV from the protocol

 Can be done by setting the right 𝑟 (turns out to be about log 𝑛)

20

One Fast(er) algorithm

for Orthogonal Vectors
(Don’t worry, still not violating OVC)

21

Fast Algorithm for OV

 Reminder: OVC states that there is no universal constant 𝜀 > 0 so that for every
constant 𝑐, 𝑂𝑉𝑛,𝑐 log 𝑛 can be solved in ෨𝑂(𝑛2−𝜀) time?

 But for a given 𝑐, one may still hope for ෨𝑂(𝑛2−𝜀𝑐) time

 And indeed, Abboud, R. Williams, and Yu (SODA ‘15) prove the following:

 Theorem: For Boolean vectors of dimension 𝑑 = 𝑐(𝑛) log 𝑛, OV can be solved in

𝑛
2−

1

𝑂 log 𝑐 𝑛 time by a randomized algorithm that is correct with high probability

 T. M. Chan and R. Williams (SODA ‘16) derandomize this:

 Theorem: There is a deterministic algorithm for 𝑂𝑉𝑛, 𝑑= 𝑐(𝑛) 𝑙𝑜𝑔 𝑛 that runs in 𝑛
2−

1

𝑂 log 𝑐 𝑛

time, provided 𝑑 ≤ 2 log 𝑛 𝑜 1

22

All hail the polynomial method

 Checking if a pair of vectors 𝑥𝑖 , 𝑦𝑗 ∈ 𝐴 × 𝐵 is orthogonal is the formula

𝐸 𝑥𝑖 , 𝑦𝑗 = ⋀𝑘=1
𝑑 (¬𝑥𝑖[𝑘] ∨ ¬𝑦𝑗[𝑘])

 Block them up into 𝑠 parts 𝐴1, … , 𝐴𝑠 & 𝐵1, … , 𝐵𝑠, each containing 𝑛/𝑠 vectors (𝑠 tbd)

 Write down the formula that evaluates if there is an orthogonal pair in 𝐴𝑖 × 𝐵𝑗 (big 𝑂𝑅 of 𝑠2

pairs of 𝐸(⋅,⋅))

 Convert that formula into a polynomial, of not-too-large degree! How?

 Razborov & Smolensky in the 80s figured out low-degree “probabilistic” polynomials that
“approximate” 𝐴𝑁𝐷 and 𝑂𝑅 functions really well

 Finally, set 𝑠 accordingly to use “fast rectangular matrix multiplication” by Coppersmith

(∃ constant 𝐶 ≈ 0.172 s.t. multiplication of an 𝑁 × 𝑁𝐶 matrix with an 𝑁𝐶 × 𝑁 matrix can be
done using ෨𝑂(𝑁2) arithmetic operations)

23

Fast Algorithms for Other Quadratic-Time Problems

 Alman, Chan and R. Williams (FOCS ‘16) give faster than brute-force algorithms for

other problems we’ve discussed today:

Min-IP & Max-IP, Exact-IP, Bichromatic-ℓ𝑝-Closest-Pair, ℓ𝑝-Furthest-Pair

 This time using Probabilistic Polynomial Threshold Functions (PTFs) (so yes, more

polynomial method)

24

All-Pairs Shortest Paths
and The Sub-cubic

World

25

A Cubic Cousin and A Quadratic Sibling

 Even more is known about APSP. The following problems are “sub-cubically equivalent” to APSP:

Negative Triangle, Triangle Listing, Shortest Cycle, 2nd Shortest Path, Max Subarray, Graph Median, Graph
Radius and Wiener Index

 Main paper is by V. & R. Williams (FOCS ‘10)

 An excellent resource for all things fine-grained related is the ICM 2018 survey of V. Williams

 3-SUM: given a set 𝑆 of 𝑛 integers from {−𝑛4, . . . , 𝑛4}, determine whether there are 𝑥, 𝑦, 𝑧 ∈ 𝑆 such that 𝑥 + 𝑦 +
𝑧 = 0

 a simple 𝑂(𝑛2 log 𝑛) time enumeration algorithm: sort 𝑆 and then for every 𝑥, 𝑦 ∈ 𝑆, check if −𝑧 ∈ 𝑆 using
binary search

 3-SUM Hypothesis (formulated in early 90s): 3-SUM on 𝑛 integers in {−𝑛4, . . . , 𝑛4} cannot be solved in
𝑂(𝑛2−𝜀) time for any 𝜀 > 0 by a randomized algorithm

 Actually, it seems that there is more literature on APSP and 3-SUM than on OV

 Many problems in comp. geom. Known to be 3-SUM-hard, including 3-Collinearity Testing

 No relation known between 3-SUM, APSP, and SETH however

26

Thank you for

listening!

